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Abstract: We continue the study of hadronic scattering amplitudes at high energy by sys-

tematically including nonlinear effects of finite partonic density in hadronic wave function

as well as the effects of multiple rescatterings in the scattering process. In this paper we

derive expressions for a single inclusive gluon production amplitude and multigluon inclu-

sive production amplitudes when the rapidities of all observed gluons are not very different.

We show that at leading order these observables exhibit a semiclassical structure. Beyond

the semiclassical result, we find that the gluon emission has some characteristic features

different from the JIMWLK and KLWMIJ limits in that the gluons are not emitted inde-

pendently in rapidity space, but have a correlated component with correlation length (in

rapidity space) of order one. We demonstrate the consistency between this feature of the

multigluon observables and the Hamiltonian of the QCD Reggeon Field Theory (HRFT)

derived in the companion paper [1]. We also show that the evolution of these observ-

ables with total rapidity of the process is generated by HRFT of [1]. We discuss whether

this evolution is equivalent to evolution with HJIMWLK as far as this set of observables is

concerned.
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1 Introduction

This is the second of two papers devoted to the study of hadronic observables at high

energy taking into account the effects of Pomeron loops. In the first paper [1], we derived

the Hamiltonian of the QCD Reggeon Field Theory [2] which accounts for the effects of

nonlinearities in the hadronic wave function as well as multiple scattering effects in hadronic

scattering, and thus fully includes Pomeron loops. It supercedes the JIMWLK [3–6] and

KLWMIJ [7] evolutions which are only applicable in parts of the parameter space. This

Hamiltonian - HRFT governs the evolution of many hadronic observables with energy. In

particular it directly gives the evolution of the forward scattering amplitude. The derivation

of [1] was based on the earlier results [8] for the evolution of the hadronic wave function.

In this paper we extend our analysis to other observables. In particular we derive

expressions for the amplitude of inclusive gluon production at high energy. We consider

single gluon production as well as multi-gluon production when all the emitted gluons

are close to each other in rapidity, so that the rapidity evolution between them does not

have to be considered. There has been a lot of interest in the calculation of inclusive

gluon production in the framework of the high energy evolution. Starting with [9] which

calculated single gluon production for DIS in the dipole model, this observable (as well as

multi-gluon production) was considered beyond the dipole model limit in DIS in [10–16]
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and in nucleus-nucleus collisions in [17–20]. Some, effects of the Pomeron loops which do

not extend to the rapidity of the measured gluons in DIS setting were studied in [21].

In the present paper we extend these results by including the Pomeron loop effects

using the methods of [1]. Our calculation is applicable to both the DIS situation and

the nucleus-nucleus scattering. We follow the approach and techniques developed in [13,

14]. The extension of these results to include evolution between the observed gluons is

straightforward but we leave it for future publication.

We note that very recently inclusive gluon production in nucleus-nucleus collision was

discussed in [20]. Our present work has many parallels with [20] even though the methods

we use are quite different. Our results are more complete in the sense that we provide

an explicit form of the observables in terms of the color charge densities of the incoming

hadrons (nuclei). It is not necessary in our approach to solve dynamical equations of motion

in order to find the outgoing classical color fields, as is required by the procedure of [20].

All that is necessary is to average a function of the incoming charge densities (albeit a

complicated one) over the initial probability distribution. The element of averaging over

the initial distributions is also present in the formalism of [20].

We also derive a set of subleading corrections to the double inclusive and multi-gluon

amplitudes, which exhibit short range rapidity correlations between the gluons in the final

state. These correlations are formally subleading in αs and are therefore not present in

the analysis of [20]. In our approach these terms are however under control. Since our

derivation of the multi-gluon observables is closely linked with the derivation of HRFT we are

able to show quite generally that the expression for HRFT derived in [1] necessarily requires

the presence of such short range gluon correlations in the multi-gluon observables. We stress

that these are not correlations due to the evolution between the rapidity of the gluons [12,

14], whose perturbative tail we also see in this calculation, but rather correlations bunching

(or anti-bunching) all emitted gluons inside a rapidity interval of order unity.

Our approach allows us to show immediately that the evolution of multi-gluon ob-

servables with respect to ”global” rapidity parameters is given by the RFT Hamiltonian

HRFT derived in [1]. By ”global” rapidity parameters we mean either the total rapidity of

the process at fixed gluon rapidity, or the rapidity difference between the emitted gluons

and the projectile; or between the emitted gluons and the target; but not the rapidity

differences between the emitted gluons themselves.

Finally we discuss the question to which extent this energy evolution of the multi-gluon

inclusive observables can be approximated by the JIMWLK evolution, as suggested in [20].

Formally it appears that HRFT can be replaced by HJIMWLK as long as one considers the

evolution of this set of observables, with corrections to HJIMWLK being suppressed by pow-

ers of αs. However we give an example of a situation where such a formal argument fails, and

thus advise caution on the subject. We believe this question merits further investigation.

We start with recapping the notations and some formulae from [1] which we will need

for our derivations. The next section does not contain any new results and is included

purely in an attempt to make the present paper self-contained in terms of notations and

definitions. All the formulae presented in this section are also found in [1]. Reader who is

familiar with notations and results of [1] can skip directly to section 3.
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2 High energy evolution as seen from [1]

2.1 Generalities

We consider a hadronic projectile moving to the right with large energy. We separate the

degrees of freedom of the hadronic wave function into ”valence” - gluons with rapidity

greater than some fixed value, and ”soft” - with rapidities lower than this separation

rapidity. The properties of the valence component of the wave function are characterized

by correlators of the color charge density operator ja(x). The wave function of the hadron

can be written as

|Ψ〉 = Ω[a, a†, j] |v〉 (2.1)

where a and a† are soft gluon creation and annihilation operators. The valence state |v〉
has no soft gluons and is therefore annihilated by the soft gluon annihilation operators

a |v〉 = 0 .

The evolution operator Ω is a unitary operator of the Bogoliubov type

Ω = C B . (2.2)

Here C is a coherent operator that creates the ”classical” Weiszacker-Williams field

C = exp

{

i
√

2

∫

d2k

(2π)2
ba
i (k)

∫

dη

2π

[

aa
i (η, k) + a†ai (η,−k)

]

}

. (2.3)

and B is a Bogoliubov type operator responsible for the leading quantum corrections. The

rapidity variable is defined as η = ln
p−0
p−

and the creation and annihilation operators are

canonical in the rapidity basis

[

aa
i (η, k), a†bj (ξ, p)

]

= (2π)3 δ(η − ξ) δ2(k − p) . (2.4)

The Weiszacker-Williams field ba
i (x) depends only on transverse coordinates x and is

a two dimensional pure gauge field:

ba
i = −1

g
fabcU †bd ∂i Udc (2.5)

where fabc are the structure constants of the SU(N) and Uab is an SU(N) group element

in the adjoint representation. The Weiszacker-Williams field is related to the valence color

charge density by

∂i b
a
i (x) = ja(x) (2.6)

The soft gluon operators a(η) are labeled by rapidity variable η as well as transverse

coordinates (or momenta), color and rotational indices. They populate the rapidity interval

Y equal to the parameter of the boost transformation that brings the wave function of the

hadron from |v〉 to |Ψ〉. We do not denote this cutoff explicitly in most of our formulae and

extend the rapidity integration over η to infinity for all quantities for which the integration

– 3 –
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converges. The Y dependence is important only for divergent quantities and eventually

this very dependence determines the evolution of physical observables with rapidity.

The explicit form of B is not important here, but its action on the gluon creation and

annihilation operators is linear

βα = B aαB† = Θαβ[j]aβ + Φαβ[j]a†β , β†
α = Ba†αB† = Θ∗

αβ[j]a†β + Φ∗
αβ[j]aβ (2.7)

It turns out to be useful to define separately the matrix

N(p, k) = Θ(p, k) − Φ(p,−k) , (2.8)

where we have indicated explicitly only the transverse momentum dependences. The trans-

formation matrices Θ, Φ and N depend on the valence color charge density and where

calculated in [1]. The explicit form of Θ and Φ is not important for us in this paper. The

expression for N is

N(p, η; k, ξ) =
2i

e−(ξ−η) − eξ−η − iǫ
〈p|(1−2l)|k〉− 〈p|(1−2L)

2i
D2

∂2 e−(ξ−η) − ∂2

D2 eξ−η + iǫ
|k〉

(2.9)

where D is the transverse covariant derivative in the background filed b, and the longitudinal

projectors l and L are defined as

lab
ij ≡ ∂i∂j

∂2
δab ; Lab

ij ≡ Dae
i (b)

[

1

D2(b)

]ed

Ddb
j (b) (2.10)

The vacuum of the operator β as calculated in [1] is

|0〉β = B|0〉 = e
1
4

Tr ln(1−Λ† Λ) e− 1
2

a† Λa† |0〉 (2.11)

with

Λ = Θ−1 Φ . (2.12)

Eqs. (2.1), (2.3), (2.11) characterize the wave function of a hadron with rapidity Y .

This hadron, which we call the ”projectile” scatters on another hadron- the ”target”. The

target is specified by a distribution of color fields αa. Calculation of many interesting

observables in the scattering process, including multi-gluon inclusive amplitudes, can be

represented as the double average over the projectile and the target wave functions of some

operator Ô

〈 Ō 〉 T =

∫

Dα W T [α] Ō ; Ō ≡ 〈v|Ô[j]|v〉 =

∫

Dj W P [j]O[j] . (2.13)

Here W P [j] is a weight functionals representing the probability distributions of the projec-

tile color charge j, while W T [α] is the same for the target fields α. The rapidity evolution

of this observable is given by HRFT (2.32) in the following sense [1, 4]

d

dY
Ō = −

∫

Dj W P [j] HRFT

[

j,
δ

δj

]

O[j] . (2.14)
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or equivalently
d

dY
W P

Y [j] = −HRFT

[

j,
δ

δj

]

W P
Y [j] . (2.15)

The Hamiltonian HRFT is formally defined as the expectation value of the unitary operator

R̂a in the hadronic wave function |Ψ〉

HRFT

[

j,
δ

δj

]

= − d

dY
〈0|Ω†[j, a, a†] R̂a Ω[j, a, a†]|0〉|Y =0 . (2.16)

with

R̂a ≡ e
R

x
ja
soft(x) δ

δja(x) (2.17)

and

ja
soft(x) = g

∫

dη

2π
a† b(η, x) T a

bc ac(η, x) (2.18)

The operator R̂a shifts the valence color charge density by the charge density of the soft

gluons. This reflects the fact that in the boosted wave function not only valence, but also

soft gluons participate in the scattering, and thus the effective color charge density must

include both j and jsoft.

HRFT was calculated in [1]. To summarize the results of [1] we have to introduce (alas

- at the risk of being repetitive) some additional notations.

2.2 Definitions

First, since the color charge density operators do not commute, we need to keep track of the

ordering in eq. (2.16). As a result we have to define the right and left color charge density

operators JR and JL. The labels refer to their order in the calculation of the matrix element

of O and the Hamiltonian HRFT. The operator Ω in eq. (2.16) has to be understood as a

function of the right charge operator JR, while the operator Ω† is a function of JL. This is

important, since observable O generically depends on the color charge density, and in the

calculation of its matrix element in |Ψ〉 it always appears sandwiched between Ω† and Ω.

Defining JR and JL specifies the relative ordering between the color charge operators in the

wave function and those in the observable. As shown in [22], the right and left charge den-

sities are related by the rotation with unitary matrix R (here t is the ordering variable [7])

Rab(x) =

[

P exp{g
∫ 1

0
dt T c δ

δjc(x, t)

]ab

. (2.19)

The matrix R has the meaning of a scattering matrix of the gluon of the target on the

projectile [22]. As discussed, for example in [23], it can be taken as the basic degree of

freedom of the Reggeon Field Theory. We can then write [22]

gJa
R(x) = −gtr

{

R(x)T a δ

δR†(x)

}

; (2.20)

gJa
L(x) = −gtr

{

T aR(x)
δ

δR†(x)

}

;

Ja
L(x) = [R(x)JR(x)]a .

– 5 –
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Accordingly we define two classical fields, bR and bL:

ba
Ri = −1

g
fabcU †bd[JR] ∂i Udc[JR] ≡ −1

g
fabcU †bd

R ∂i Udc
R ;

ba
Li = −1

g
fabcU †bd[JL] ∂i Udc[JL] ≡ −1

g
fabcU †bd

L ∂i Udc
L (2.21)

The matrices Θ, Φ and Λ also ”bifurcate” into Right and Left quantities.

ΛR ≡ Λ[JR] = Θ−1[JR] Φ[JR]; ΛL ≡ Λ[JL] = Θ−1[JL] Φ[JL] . (2.22)

It is thus clear that for the purpose of the calculation of the average of any observable

the proper ordering of the factors of the charge density is equivalent to the substitution

Ω† → Ω†
L = B†

L C†
L; Ω → ΩR = CR BR (2.23)

where the subscript L (R) indicates that the respective operator depends on JL (JR). Due

to the presence of the operator R̂a in eq. (2.16) (and in other similar averages) it turns

out that the Left quantities are always rotated by the matrix R. It is thus convenient to

introduce the barred quantities

Ω̄L ≡ C̄L B̄L; B̄L ≡ R̂†
a BL , C̄L ≡ R̂†

a CL R̂a . (2.24)

and accordingly

b̄a
L i ≡ R†ab bb

L i; Λ̄L ≡ R† ΛL R; N̄L = NLR (2.25)

Finally we introduce another set of matrices

Kαβ =(Θ Θ̄† − Φ Φ̄†)αβ ; Eαβ =(Φ Θ̄T − Θ Φ̄T )αβ ; (2.26)

Ξ =K−1 E . (2.27)

which satisfy

KET − EKT =0, KK† − EE† =1; K†K − ET E∗ =1; K†E − ET K∗ =0 ;

(2.28)

1

1 − Ξ Ξ† =K† K ;
1

1 − Ξ† Ξ
=KT K∗ . (2.29)

Above we have omitted the indices L and R. All the barred quantities depend on JL while

the unbarred ones - on JR. We will stick to this practice in the following, whenever it does

not lead to confusion.

The matrices K, E and Ξ are the analogs of the Bogoliubov transform eq. (2.7) for

transformation between the operators βR ( defined by eq. (2.7) with ΘR, etc.) and β̄L (

defined by eq. (2.7) with Θ̄R, etc.). The matrices K and E, which we will need in the

– 6 –
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following have been calculated in [1]

K(p, η; k, ξ) = i〈p|2(1 − l − LR)R†(l − LL) + (1 − l − LR)(∆̄ − ∆†
R)R†(1 − l − LL)|k〉

+
i

1 − eξ−η + iǫ
〈p|(1 − 2l)R†(1 − 2l)|k〉

−i〈p|(1 − 2LR)
1

1 − D2
R

D̄2 eξ−η − iǫ
R†(1 − 2LL)|k〉

E(p, η;−k, ξ) = i〈p|2(1 − l − LR)R†(l − LL) + (1 − l − LR)(∆̄ − ∆†
R)R†(1 − l − LL)|k〉

+
i

1 + eξ−η
〈p|(1 − 2l)R†(1 − 2l)|k〉

−i〈p|(1 − 2LR)
1

1 +
D2

R

D̄2 eξ−η
R†(1 − 2LL)|k〉 (2.30)

with

D̄ ≡ R† DL R; ∆̄ = R† ∆L R . (2.31)

In eq. (2.30) ∆ is an operator in the transverse space, which we do not specify, since it

does not appear in the following, DR and DL are transverse covariant derivatives in the

background fields bR and bL respectively, and longitudinal projectors LR(L) are defined as

in eq. (2.10). In eq. (2.30) all DR are ordered to the left of DL.

2.3 HRFT

The result of [1] for HRFT to leading order in αs in the concise matrix notation is

HRFT =
d

dY

{

∫

x,y,z,u

[

b(x) − b̄(x)
]

∫

η,ξ,λζ

N̄ †(η, x; ξ, y)K−1(ξ, y; λ, z)N(λ, z; ζ, u)
[

b(u) − b̄(u)
]

+
1

4
Tr ln (KK†)

}

|Y =0 . (2.32)

The Tr ln term in this expression is subleading in αs and will not be considered any

further. While b is independent of rapidity, both N and K depend on rapidity differences

only. Introducing

N⊥(x, y) ≡
∫

η−ξ

N(x, η, y, ξ) = [1 − l − L] (2.33)

which will reappear in the next section and performing the rapidity integrations the result

for the first term in eq. (2.32) can be recast in the form

HRFT =
1

π
[bRR† − bL ] (1 − l − LL) (2.34)

×
[

(1 − 2l)R†(1 − 2l) + (1 − 2LR)R†(1 − 2LL)
]−1

(1 − l − LR) [bR − R†bL] .

– 7 –
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Reinstating explicitly transverse coordinate dependences this reads

HRFT =
1

8π3

∫

x,y,z,z̄

[bb
Ri(x)R†ba(x) − ba

Li(x)]

[

δij
1

(x − z)2
− 2

(x − z)i (x − z)j
(x − z)4

]

×
[

δac + [U †
L(x)UL(z)]ac

]

K̃−1 cd
⊥jk (z, z̄)

[

δkl
1

(y − z̄)2
− 2

(y − z̄)k (y − z̄)l
(y − z̄)4

]

×
[

δde + [U †
R(z̄)UR(y)]de

]

[be
Rl(y) − R†ef (y) bf

Lk(y)] (2.35)

with

K̃ ab
⊥ij(x, y) =

1

2π2

∫

z

[

δik
1

(x−z)2
− 2

(x−z)i(x−z)k
(x−z)4

] [

δkj
1

(z − y)2
− 2

(z − y)k(z − y)j
(z − y)4

]

×
{

R†ab(z) +
[

U †
R(x)UR(z)R†(z)U †

L(z)UL(y)
]ab

}

(2.36)

With all the definitions in place we can now proceed to calculation of the multi-

gluon spectrum.

3 The amplitudes Q and the scattering amplitude

We will start by rederiving the results of [1] in a slightly more general way which later

will allow us to calculate additional observables. First, we remind the reader the general

formalism of [23], which we will use here. The matrix element eq. (2.16) pertinent to the

calculation of HRFT can be represented, using the optical theorem as

〈0|1 − Ω† R̂a Ω|0〉 =
1

2
〈0|(1 − Ω† R̂†

a Ω) (1 − Ω† R̂a Ω)|0〉 . (3.1)

This assumes that the amplitude is real, which in our case can be verified directly by

examining eq. (2.34). Introducing the complete basis of intermediate states and defining

the amplitudes

Qn(xi, ηi) = 〈x1, η1; . . . ;xn, ηn|(1 − Ω† R̂A Ω)|0〉 = 〈n| Ω̄† Ω|0〉 (3.2)

we can write

HRFT =
1

2

d

dY

∞
∑

n=1

∫

Πn
i=1 [dxidηi] Q†

n(xi, ηi)Qn(xiηi) |Y =0 . (3.3)

As explained in [23], the amplitudes Qn has the meaning of emission amplitudes of n gluons

in one step of evolution. The knowledge of Qn in principle allows one to construct also

exclusive observables, for example constraining the number of particles produced in the

final state. In the next section we will use Qn to calculate single and double inclusive

gluon production.

Our aim is to write the expression for Qn in the normal ordered form, so that the

amplitudes can be easily read off.

Ω̄† Ω |0〉 = B̄† C̄† C B |0〉 = B̄† ei
√

2(b̄−b) (a+a†) B̄ B̄† B |0〉 . (3.4)

– 8 –
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where

√
2(b̄ − b) (a + a†) ≡

√
2

∫

d2x
[

b̄a
i (x) − ba

i (x)
]

∫

dη

2π

[

aa
i (x, η) + aa†

i (x, η)
]

. (3.5)

For the first factor, using the fact that B̄ is the Bogoliubov operator with the action similar

to eq. (2.7) with Θ, Φ → Θ̄, Φ̄ we have

B̄†ei
√

2(b̄−b)(a+a†)B̄ = ei
√

2(b̄−b)(N̄†a+N̄T a†) = e−(b̄−b)N̄†N̄(b̄−b)ei
√

2(b̄−b)N̄T a†

ei
√

2(b̄−b)N̄†a .

(3.6)

The state B̄† B |0〉 is the vacuum of the operator

β̃ = B̄† B a B̄ B† = K a + E a†; (3.7)

with K and E defined in eq. (2.26). Comparing eq. (3.7) with eq. (2.7), we can use eq. (2.11)

with the substitution Λ → Ξ to write

B̄† B |0〉 = e
1
4

Tr ln(1−Ξ†Ξ) e−
1
2

a† Ξ a† |0〉 . (3.8)

Now using the fact that the annihilation operator can be represented as a = δ
δa† we can

write

ei
√

2 (b̄−b) N̄† a e−
1
2

a† Ξa† |0〉 = e−
1
2 (a†+i

√
2 (b̄−b) N̄†) Ξ (a†+i

√
2 (b̄−b) N̄†)|0〉 . (3.9)

And so, finally the normal ordered form is

Ω̄†Ω|0〉 = e
1
4
Tr ln(1−Ξ†Ξ)e−(b̄−b)[N̄†N̄−N̄†ΞN̄∗](b̄−b)ei

√
2(b̄−b)[N̄T−N̄†Ξ]a†

e−
1
2
a†Ξa† |0〉 . (3.10)

Using the relations eqs. (2.28), (2.27) and the definition of Ξ in terms of Θ,Φ, Θ̄, Φ̄ it is

straightforward to show

N = KN̄ − EN̄∗; N̄ = K†N + ET N∗ . (3.11)

Thus we can rewrite eq. (3.10) as

Ω̄† Ω |0〉 = e−
1
4

Tr ln(K†K) e− (b̄−b) N̄† K−1 N (b̄−b) e i
√

2 a† K−1 N (b̄−b) e− 1
2

a† Ξ a† |0〉 . (3.12)

Taking the overlap of eq. (3.12) with the vacuum (〈0| Ω̄†Ω |0〉) we reproduce the result

of [1] eq. (2.32), while the last two factors in eq. (3.12) allow us to calculate Qn in a

straightforward manner.

Scattering amplitude once again. Before moving on to discussion of inclusive gluon

spectrum, we rederive the expression for the scattering amplitude and for the RFT Hamil-

tonian using eq. (3.3). This will explicitly establish the equivalence of the two approaches

and will also serve as a consistency check on our expressions for the amplitudes Qn. Ac-

cording to eq. (3.3) we need to extract the term linear in Y from the sum of squares of the

amplitudes Qn integrated over the transverse coordinates and rapidities. The amplitudes

Qn are obtained by expanding the exponent in eq. (3.12) to appropriate order. In general

therefore the calculation will involve expressions of the type

〈0| [(b̄ − b)N † K†−1 a]m [aΞ† a]k [a† K−1 N (b̄ − b)]l [a† Ξ a†]n |0〉 . (3.13)
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Here m, n, l, k are some integer powers to be summed over. For the purpose of the present

discussion we will think of the matrix Ξ(ξ − η) as short range in rapidity space. Although

this is not really the case, as discussed in detail in [1], the nonlocal in rapidity terms have to

be subtracted from the final result, since they lead to higher powers of Y . Recall that the

field b̄− b does not depend on rapidity. Thus after contracting all a’s with a†’s in eq. (3.13)

we will generate expressions of two types and their products (for simplicity of notation we

drop in this schematic discussion the factors of N K−1 which accompany powers of (b̄− b))

(b̄ − b)

∫

η ξ

[Ξ† Ξ]k(η, ξ) (b̄ − b); Tr[Ξ† Ξ]l . (3.14)

It is easy to see that each one of these terms is of order Y . Thus we only need to consider

contractions in eq. (3.13) that lead to appearance of only one such ”connected” term,

rather than product of two or more - the ”disconnected” graphs . This has an immediate

consequence that only terms of order (b̄−b)2 have to be kept. Higher powers of b necessarily

lead to disconnected graphs and thus necessarily to higher powers of Y . On the other hand,

the terms which do not contain any powers of b are suppressed by a power of coupling

constant αs. Thus we are lead to the conclusion that the only terms that contribute to

HRFT are connected contractions of order (b̄ − b)2. With this in mind the calculation

becomes straightforward.

Let us consider odd and even n’s separately.

Q2n+1 = i (−1)n
√

2

2nn!
〈n| [a† K−1 N (b̄ − b)] [a† Ξ a†]n |0〉 . (3.15)

Then
∫

dxi dηi Q†
2n+1(x, η)Q2n+1(x, η) = 2 (b̄ − b)N † K†−1

[

Ξ Ξ†
]n

K−1 N (b̄ − b) . (3.16)

Thus
∞
∑

n=0

Q†
2n+1 Q2n+1 = 2 (b̄−b)N † K†−1 1

1 − Ξ Ξ† K−1 N (b̄−b) = 2 (b̄−b)N † N (b̄−b) (3.17)

where we have used eq. (2.29). For even n we have

Q2n = (−1)n
1

2nn!
〈n| 2n

[

a† K−1 N (b̄ − b)
]2 [

a† Ξ a†
]n−1

+
[

a† Ξ a†
]n

|0〉 . (3.18)

So
∫

dxidηiQ
†
2n(x, η)Q2n(x, η)=

[

(b̄− b)NT K−1T Ξ†
[

ΞΞ†
]n−1

K−1N(b̄− b) + h.c.

]

. (3.19)

Thus
∞
∑

n=1

Q†
2nQ2n =

[

(b̄ − b)NT K−1T Ξ† 1

1 − ΞΞ†K
−1N(b̄ − b) (3.20)

+ (b̄ − b)N †K−1† 1

1 − ΞΞ†ΞK−1∗N∗(b̄ − b)

]

=
[

(b̄ − b)NT K−1T E† N (b̄ − b) + (b̄ − b)N † E K−1∗ N∗ (b̄ − b)
]

.
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Altogether

∞
∑

n=1

Q†
n Qn = (b̄ − b)

[

2N † N + NT K−1 T E† N + N † E K−1∗ N∗
]

(b̄ − b) . (3.21)

Finally using eq. (3.11) it can be recast in the form

∞
∑

n=1

Q†
n Qn = (b̄ − b)

[

N̄ † K−1 N + h.c.
]

(b̄ − b) = 2 (b̄ − b) N̄ † K−1 N (b̄ − b) (3.22)

which reproduces HRFT - the first term in eq. (2.32).

We note without proof, that were we to keep also subleading in αs terms in Q†
2nQ2n

we would also reproduce the second term in eq. (2.32).

4 Inclusive gluon production

4.1 Single gluon inclusive production

We now turn to derivation of the amplitude dn(η, k)/dη for inclusively produce gluon with

rapidity η and transverse momentum k. Here we follow the approach of [13, 14].

The single gluon inclusive amplitude is defined as

dn(η, k)

dη
=

∫

Dj DS W P [j]Og(k, η)W T [S] (4.1)

with the gluon operator to be measured in the collision

Og(k, η) =
1

2π
〈0|Ω† Ŝ† Ω a†ai (η, k) aa

i (η, k) Ω† Ŝ Ω |0〉

=
1

2π

∫

x,y

ei k (x−y) 〈0|Ω† Ŝ† Ω a†ai (η, x) aa
i (η, y) Ω† Ŝ Ω |0〉 . (4.2)

The state |0〉 as before is the vacuum of the soft gluon Hilbert space. The operator Ŝ

here is the second quantized S-matrix operator, which acts as a color rotation on the gluon

creation and annihilation operators as well as on the color charge density in the operator Ω†

Ŝ† aa(x) Ŝ = Sab(x) ab(x); Ŝ† ja(x) Ŝ = Sab(x) jb(x) . (4.3)

The unitary matrix S(x) is the scattering matrix of a single gluon in the color field of the

target. The target average in eq. (4.2) amounts to integrating over S(x) with a weight

function determined by the wave function of the target [13, 14].

The definition eq. (4.2) involves objects almost identical to the amplitudes Qn discussed

above. In fact the operator Ω̄† Ω becomes identical to the operator Ω†ŜΩ upon substitution

R → S. The operator Og is computed in the appendix by acting with Ω directly on fields a.

Here we will use a different procedure which makes clear the connection to the calculation

of HRFT in the previous section. Inserting resolution of identity in eq. (4.2) we can write

Og(k, η) =
1

2π

∞
∑

n=1

∫

x,y

ei k (x−y)

∫

1

(2π)n−1
Πn−1

i=1 d2zidηinQ†
n[S; zi, ηi;x, η]Qn[S; zi, ηi; y, η]

(4.4)
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where Qn[S] is obtained from the amplitude Qn by substituting S for R. In the rest of

this section we will simply use Qn to denote the amplitudes that enters eq. (4.4), but will

keep in mind that they are related to the amplitudes used in the previous subsection by

the aforementioned substitution. Note that now Qn are operators on the target Hilbert

space and thus the averaging over the target as in eq. (4.1) is necessary.

The expression in eq. (4.4) can be calculated using eqs. (3.16), (3.19). In practical

terms we have to cut one index linking one of the Ξ’s and Ξ† (or Ξ and b̄ − b etc.) in

eq. (3.16) and eq. (3.19) and take the free transverse coordinate of Ξ equal to x, while that

of Ξ† equal to y. Each term can be cut in n possible positions, and all those cuts have to

be summed over. Thus for odd n we obtain
∞
∑

n=0

∫

dzi,ηi

(2n + 1)Q†
2n+1(zi, ηi, x, η)Q2n+1(zi, ηi, y, η) =

= 2
∞

∑

n=0

[

n
∑

m=0

(b̄ − b)N †
⊥K†−1[ΞΞ†]my x[ΞΞ†]n−mK−1N⊥(b̄ − b)

+
n−1
∑

m=0

(b̄ − b)N †
⊥K†−1[ΞΞ†]mΞx yΞ

†[ΞΞ†]n−m−1K−1N⊥(b̄ − b)

]

= 2(b̄ − b)N †
⊥K†−1[1 − ΞΞ†]−1

y x[1 − ΞΞ†]−1K−1N⊥(b̄ − b)

+2(b̄ − b)N †
⊥K†−1[1 − ΞΞ†]−1Ξx yΞ

†[1 − ΞΞ†]−1K−1N⊥(b̄ − b)

= 2(b̄ − b)N †
⊥Ky xK†N⊥(b̄ − b) + (b̄ − b)N †

⊥Ey xE†N⊥(b̄ − b) (4.5)

where we have used a shorthand notation xAb ≡
∫

y
A(x, y)b(y); bAy ≡

∫

x
b(x)A(x, y).

For even n we obtain
∞
∑

n=1

∫

zi,ηi

2n Q†
2 n(zi, ηi, x, η)Q2n(zi, ηi, y, η) =

=

∞
∑

n=1

[

n
∑

m=0

(b̄ − b)NT
⊥ KT−1 Ξ†[Ξ Ξ†]my x[Ξ Ξ†]n−m K−1 N⊥ (b̄ − b)

+

n−1
∑

m=0

(b̄ − b)NT
⊥ KT−1 [Ξ† Ξ]mx yΞ

† [Ξ Ξ†]n−m−1 K−1 N⊥ (b̄ − b) + h.c.(x → y)

]

=

[

(b̄ − b)NT
⊥ KT−1 [1 − Ξ† Ξ]−1

x yΞ
† [1 − Ξ Ξ†]−1 K−1 N⊥ (b̄ − b)

+(b̄ − b)NT
⊥ KT−1 [1 − Ξ† Ξ]−1

x yΞ
† [1 − Ξ Ξ†]−1 K−1 N⊥ (b̄ − b) + h.c.(x → y)

]

= 2(b̄ − b)NT
⊥ E∗

y x K† N⊥ (b̄ − b) + 2 (b̄ − b)N †
⊥ Ey x KT N∗

⊥ (b̄ − b) (4.6)

Adding eqs. (4.5) and (4.6) and using eq. (3.11) it is now straightforward to show that

Og[k, η] =
1

π

∫

x,y

ei k (x−y) (b̄ − b) N̄ †
⊥ y xN̄⊥ (b̄ − b)

=
1

π

∫

x,y

ei k (x−y) (bL − bR S†) (1 − l − LL)y x(1 − l − LL) (bL − S bR) . (4.7)
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Note that the gluon emission operator Og is independent of the rapidity of the gluon η, as

it should be for a boost invariant plateau.

As a corollary we note that integrating eq. (4.7) over the transverse momentum we

obtain the expression for total multiplicity

dn

dη
=

1

π
〈 (bL − bR S†) [1 − l − LL + LLl + lLL] (bL − S bR) 〉j,S . (4.8)

This generalizes the results of [9] for the inclusive gluon spectrum in p-A scattering.

We can check explicitly that in the KLWMIJ limit eq. (4.7) indeed reduces to the known

result of [9–11, 13]. In the limit of dilute projectile as before we take

LL → l; ba
i (x) → 1

2π

∫

d2z
(x − z)i
(x − z)2

ja(z), ba
L i(x) → 1

2π

∫

d2z
(x − z)i
(x − z)2

Sabjb(z) .

(4.9)

In this limit then the two factors 1 − 2l = δij − 2
kikj

k2 cancel against each other. We then
obtain

dn(η, k)

dη
=

1

4π3

∫

x,y,z,z̄

eik(x−y)〈jb(z)
[

Sab(z) − Sab(y)
] (y − z)i

(y − z)2
(x − z̄)i

(x − z̄)2
[Sac(z̄) − Sac(x)] jc(z̄)〉j,S

(4.10)

which is the known result [9, 11, 13].

Recently single inclusive gluon spectrum in nucleus-nucleus collision was discussed

in [20]. Although the setup of [20] is somewhat different from ours, it is possible to establish

close correspondence between the two approaches. The procedure of [20] is the following.

The single gluon inclusive spectrum is defined as

dn(η, k)

dη
=

1

π

∫

x,y

eik(x−y) 〈Aa
i (y)Aa

i (x) 〉P,T (4.11)

where A is the solution of classical Yang-Mills equations of motion with initial condition

corresponding to colliding sheets of color charge density (nuclei) [24]. The solution should

be taken at asymptotically large time after the collision. The averaging is then done over

initial conditions with separate weight functions for the projectile and target color charge

distributions. This procedure is somewhat implicit since the classical field A has to be

found by numerical solution of the classical equations.

Comparing this to our result, we see that eq. (4.7) indeed ”‘feels”’ like the classical

field. The expression

A = N̄⊥ (b̄ − b) = (1 − l − LL) [bL − S bR] . (4.12)

plays the role of the classical field at asymptotically large times after the collision. With

this identification our formula becomes very similar to that of [20] except for the fact that

our expression is rather more explicit. To evaluate eq. (4.7) there is no need to solve

dynamical equations of motions, but rather only to solve the static classical equations at

early time, which express the classical field b in terms of the color charge density j. In fact

it may be possible to avoid this step altogether if one can write down directly a weight
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function for b as advocated in the fourth paper in [4]. This is an interesting question and

we intend to come back to it in the future.

We also mention, that an expression for dn(η,k)
dη

was suggested in [17]. The averaging

over the target and projectile weight functionals was performed in [17] using the McLerran-

Venugopalan model [25]. Since we are still not at the point where we can calculate the

average of the expression (4.7), we cannot compare our result with the suggestion of [17].

Ref. [20] also discusses the evolution of the single gluon spectrum with energy. We

have so far discussed only the explicit form of the observable itself. The evolution in our

approach however is very straightforward to understand. We will discuss this later on in

this section.

4.2 Double and multi gluon inclusive amplitudes

The same strategy can be used to calculate the double inclusive cross section as well as

higher gluon number correlations. In this paper we only consider multi gluon observables

where all the counted gluons have rapidities not too far away from each other, so that it is

not necessary to consider rapidity evolution between them. The double gluon cross section

for two gluons with rapidities η and ξ and transverse momenta k and p is defined as

dn(η, k; ξ, p)

dη dξ
=

1

(2π)2
〈 〈0|Ω† Ŝ† Ω a†ai (η, k) aa

i (η, k) a†ai (ξ, p) aa
i (ξ, p)Ω† Ŝ Ω |0〉〉j,S

=
1

(2π)2

∫

(x,x̄;y,ȳ)
eik(x−x̄)+ip(y−ȳ)〈〈0|Ω†Ŝ†Ωa†ai (η, x)aa

i (η, x̄)a†ai (ξ, y)aa
i (ξ, ȳ)Ω†ŜΩ|0〉〉j,S

=
1

(2π)2

∞
∑

n=2

∫

x,x̄,yȳ

ei k (x−x̄) + i p (y−ȳ)

∫

1

(2π)n−2
Πn−2

i=1 d2zi dηi n (n − 1)

× 〈Q†
n(S; zi, ηi;x, η, y, ξ) Qn(S; zi, ηi; x̄, η, ȳ, ξ) 〉j,S . (4.13)

The calculation is straightforward albeit fairly long. The leading contribution to the double
inclusive amplitude is obviously O( 1

α2
s
). The result for this contribution is

dn(η, k; ξ, p)

dη dξ
=

1

π2

∫

(x,x̄;y,ȳ)

eik(x−x̄)+ip(y−ȳ)〈(
[

(b̄− b)N̄ †
⊥x̄ xN̄⊥(b̄− b)

][

(b̄ − b)N̄ †
⊥ȳ yN̄⊥(b̄ − b)

]

〉j,S

=
1

π2

∫

(x,x̄;y,ȳ)

eik(x−x̄)+ip(y−ȳ)〈
[

bL − bRS†)(1 − l − LL)x̄ x(1 − l − LL)(bL − SbR)
]

×
[

bL − bRS†)(1 − l − LL)ȳ y(1 − l − LL)(bL − SbR)
]

〉j,S .

(4.14)

This again is the ”classical” contribution. It is ”disconnected” in the sense that it does

not depend on either rapidity η or ξ and as an operator on the valence and target Hilbert

spaces, is equal to the square of the single inclusive amplitude O2
g . This result immediately

generalizes to multi-gluon inclusive amplitudes defined as

dn(η1, k1; . . . , ηn, kn)

dη1 . . . dηn
=

∫

Dj DS W P [j] Γn(k1, . . . kn; η1, . . . ηn)W T [S] (4.15)

with

Γn(k1, . . . kn; η1, . . . ηn) ≡ 1

(2π)n
〈0|Ω†Ŝ†Ωa†a

i (η1, k1)a
a
i (η1, k1) . . . a†b

j (ηn, kn)ab
j(ηn, kn)Ω†ŜΩ|0〉 .

(4.16)
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Similarly to the double gluon case, Γn can be expressed in terms of Qn:

Γn(k1, . . . kn; η1, . . . ηn) =
1

(2π)n

∞
∑

m=n

∫

x1,x̄1,...,xn,x̄n

ei k1(x1−x̄1)+...+i kn (xn−x̄n)

∫

1

(2π)m−n

n!

m!

×Πm−n
i=1 d2zi dηi Q†

m(S; zi, ηi;x1, η1, . . . , xn, ηn) Qm(S; zi, ηi; x̄1, η1, . . . , x̄n, ηn) .

To leading order in the coupling constant

Γn(k1, . . . , kn; η1, . . . ηn) → ΓLO
n (k1, . . . , kn) ≡ Og(k1) . . . Og(kn) (4.17)

or equivalently

dn(k1, . . . , kn)

dη1 . . . dηn

=
1

πn

∫

(x1,x̄1;...xn,x̄n)

eik1(x1−x̄1)+...+ikn(xn−x̄n)〈[A(x1) · A(x̄1)] . . . [A(xn) · A(x̄n)] 〉j,S
(4.18)

with the ”classical field” A defined in eq. (4.12). Thus all these observables have the same

structure as discussed in [20] with the identification of the classical field at asymptoticaly

late times given by eq. (4.12). All these leading order contributions do not depend on the

rapidities of emitted gluons, since the gluons in leading order are emitted independently.

This is the same as in the leading order BFKL calculations [26]. This of course does not

mean that the multi-gluon amplitude is simply the product of single gluon ones

dn(k1, . . . , kn)

dη1 . . . dηn
6= dn(k1)

dη1
. . .

dn(kn)

dηn
. (4.19)

It is the averaging over the projectile valence and the target Hilbert spaces that breaks the

factorization, even though the equality holds on the level of operators eq. (4.17).

Beyond the leading order things become more interesting. In particular the indepen-

dence of rapidity does not hold anymore. We will only consider here the double inclusive

gluon amplitude in detail. The calculation for multi-gluon inclusive is very similar and not

more illuminating. At order O( 1
αs

) the double inclusive amplitude has a contribution with

a nontrivial dependence on the rapidity difference η − ξ. This is the new feature of our

calculation which is not present neither in KLWMIJ nor in JIMWLK limits. It also has

not been considered in [20], as it is formally the next to leading order contribution. Similar

correlations, however, arise in the BFKL at NLO.

To calculate the correlated contribution we return to the definition eq. (4.13). The

mechanics of the calculation is very similar to the single gluon inclusive amplitude. We

have to cut two links between Ξ’s and Ξ†’s in eq. (3.16) and eq. (3.19), and settle the

cut links with the free transverse coordinates and rapidities of the counted gluons. This

generates terms of O(1/α2
s), O(1/αs) and O(1). The former terms add up to the result

quoted in eq. (4.14). Terms of O(1) we neglect and concentrate on the terms O(1/αs). Some

of the terms in the resulting expression do not depend on the rapidities of the gluons. We

do not have control over this type of terms. The reason is the following. As we have

discussed in [1] we have not been careful with the subleading terms in HRFT related to

relative ordering between b and Λ. The terms arising from a change of ordering would lead

to a ”virtual correction” to the classical field b of order δb ∼ O(g). These terms would
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also be present in the expression for Qn and thus would give contribution to our present

calculation at O(1/αs). However the structure of these terms is clearly the same as that

of the leading O(1/α2
s) terms, and thus will not depend on rapidity.

We conclude that at present we do not have control over rapidity independent terms

in O(1/αs) but can unambiguously calculate the rapidity dependent terms to this order.

We note that there is nothing that fundamentally prevents us from treating the ordering

more carefully and thus calculating all subleading terms in the nucleus-nucleus scattering

case. We choose not to do so in this paper since it is a separate question and deserves a

careful treatment in its own right.

We thus concentrate on the terms depending on the rapidity difference η − ξ. In

principle therefore we should be calculating dn(k,p)
dηdξd(η−ξ) , but rather than taking an extra

derivative we will simply subtract any term we get which does no depend on η − ξ. A

straightforward calculation along the lines described above gives:

dn(η, k; ξ, p)

dηdξ
|correlated =

1

2π2

∫

(x,x̄;y,ȳ)
eik(x−x̄)+ip(y−ȳ)

×〈
[

(b̄ − b)N̄ †
⊥x̄(E†E)(x,η;ȳ,ξ) yN̄⊥(b̄ − b) + (b̄ − b)N̄ †

⊥ȳ(E
†E)(y,ξ;x̄,η) xN̄⊥(b̄ − b)

+(b̄ − b)N̄ †
⊥x̄(K†E)(x,η;y,ξ) ȳN̄

∗
⊥(b̄ − b) + (b̄ − b)N̄T

⊥x(E†K)(x̄,η;ȳ,ξ) yN̄⊥(b̄ − b)

+(b̄ − b)N̄ †
⊥x̄(K†E)(y,ξ;x,η) ȳN̄

∗
⊥(b̄ − b) + (b̄ − b)N̄T

⊥x(E†K)(ȳ,ξ;x̄,η) yN̄⊥(b̄ − b)
]

〉j,S .

(4.20)

We stress again, that all expressions in this equation and below depend on the single gluon

scattering matrix S, rather than the matrix R.

To simplify this expression further we note that the integral of N̄ over rapidity is

real, and therefore N̄∗(b̄ − b) = N̄(b̄ − b). Further we note that the matrix E is pure

imaginary. Finally we have to remember that the operator in eq. (4.20) has to be averaged

over the projectile and target wave functions. We will assume that the averaging weights

are rotationally invariant, and thus the result must be invariant under k → −k; p → −p,

which is equivalent to (x̄, ȳ → x, y). Under this assumption eq. (4.20) becomes

dn(η, k; ξ, p)

dηdξ
|correlated =

1

2π2

∫

(x,x̄;y,ȳ)
eik(x−x̄)+ip(y−ȳ) (4.21)

×〈
[

(b̄ − b)N̄ †
⊥x̄[E†E](x,η;ȳ,ξ) yN̄⊥(b̄ − b) + (b̄ − b)N̄ †

⊥ȳ(E
†E)(y,ξ;x̄,η) xN̄⊥(b̄ − b)

+ (b̄ − b)N̄ †
⊥x̄[E†(K − K∗)](x,η;y,ξ) ȳN̄⊥(b̄ − b)

+(b̄ − b)N̄ †
⊥x̄[E†(K − K∗)](y,ξ;x,η) ȳN̄⊥(b̄ − b)

]

〉j,S .

We further note that the operators E†E and E†(K − K∗) are both Hermitian and real,

and therefore symmetric. Thus we finally get

dn(η, k; ξ, p)

dηdξ
|correlated =

1

π2

∫

(x,x̄;y,ȳ)
eik(x−x̄)+ip(y−ȳ) (4.22)

×〈
[

(b̄− b)N̄ †
⊥x̄[E†E](x,η;ȳ,ξ) yN̄⊥(b̄− b)+(b̄− b)N̄ †

⊥x̄[E†(K− K∗)](x,η;y,ξ) ȳN̄⊥(b̄− b)
]

〉j,S .
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To get a more explicit expression we first note the following two integrals

∫

ξ

1

1 + Aeη−ξ

1

1 + Beλ−ξ
=

1

2

B
A

eλ−η + 1
B
A

eλ−η − 1
ln

[

B

A
eλ−η

]

+ C1 (4.23)

∫

ξ

1

1 + Aeη−ξ

[

1

1 − Beλ−ξ + iǫ
+

1

1 − Beλ−ξ − iǫ

]

=
B
A

eλ−η − 1
B
A

eλ−η + 1
ln

[

B

A
eλ−η

]

+ C2

The terms C1 and C2 do not depend on the rapidity difference η − λ. They are both

formally logarithmically divergent when the integration over ξ is unrestricted. They do

depend in principle on η + λ. The dependence on the sum of rapidities however, is simply

part of the evolution of this observable in the rapidity difference between the projectile and

the measured gluons. We will discuss this evolution in the next subsection, but are not

interested in it for the current discussion. We thus will drop the terms C1 and C2 in the

following since they do not depend on the rapidity difference. We next use these integrals

to calculate the products of matrices E and K that enter eq. (4.21):

[E†E](x,η;y,λ) = 〈x|e
λ−η + 1

eλ−η − 1
(λ − η)|y〉 (4.24)

− 1

2
〈x|(1−2l)S(1−2l)(1−2LR)

D2
R

D̄2 eλ−η+1

D2
R

D̄2 eλ−η−1
ln

[

D2
R

D̄2
eλ−η

]

S†(1−2LL)|y〉

− 1

2
〈x|(1−2LL)S

D2
R

D̄2 eη−λ+1

D2
R

D̄2 eη−λ−1
ln

[

D2
R

D̄2
eη−λ

]

(1−2LR)(1−2l)S†(1−2l)|y〉

[

E†(K−K∗)
]

(x,η;y,λ)
= 2〈x|e

λ−η − 1

eλ−η + 1
(λ − η)|y〉 (4.25)

− 〈x|(1−2l)S(1−2l)(1−2LR)

D2
R

D̄2 eλ−η−1

D2
R

D̄2 eλ−η+1
ln

[

D2
R

D̄2
eλ−η

]

S†(1−2LL)|y〉

− 〈x|(1−2LL)S

D2
R

D̄2 eη−λ−1

D2
R

D̄2 eη−λ+1
ln

[

D2
R

D̄2
eη−λ

]

(1−2LR)(1−2l)S†(1−2l)|y〉 .

There clearly is a nontrivial dependence on the rapidity difference in these expressions.

Interestingly enough this dependence does not disappear even when the rapidities are far

from each other. At large values of rapidity difference λ − η we have

2[E†E](x,η;y,λ)||λ−η|≫1 =
[

E†(K − K∗)
]

(x,η;y,λ)
||λ−η|≫1 (4.26)

= 〈x|2 − (1 − 2l)S(1 − 2l)(1 − 2LR)S†(1 − 2LL)

−(1 − 2LL)S(1 − 2LR)(1 − 2l)S†(1 − 2l)|y〉|λ − η| .

Thus we find that the rapidity correlation between the two gluons in the next to leading

order does not disappear at large rapidities. Obviously we cannot use these expressions

when the rapidity difference is too large, since then we have to take into account the

rapidity evolution between η and λ. Still η − λ can be taken parametrically of order one,
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but numerically greater than one. In this regime our calculation should be valid and the

effect is visible.

It would be very interesting to understand the physics of the appearance of these

correlations and their possible implications. It is rather clear that we should understand

some of these terms as the first correction due to the rapidity evolution between η and λ,

which indeed should be a formally subleading correction to the leading result eq. (4.20).

At the moment we cannot make any further comments on the subject and leave it as a

question well worth studying.

We note however, that not all the terms in eq. (4.24) can be attributed to the evolution.

Some of them, when integrated over rapidity, contribute directly to the leading order

RFT Hamiltonian. The Hamiltonian can be represented in terms of the inclusive gluon

amplitudes Γn in the manner analogous to the representation in terms of amplitudes Qn

HRFT = Σ∞
n=1

(−1)n

n!

d

dY

∫

{ki;ηi}
Γn(k1, . . . , kn, η1, . . . ηn)|Y =0 . (4.27)

This picks out the linear in Y piece in the integral of Γn, including of course Γ2, over

rapidities. Such a contribution does not come from the leading order piece, which is clearly

proportional to Y 2 (for Γ2) nor from the η− ξ ≫ 1 integration region of eq. (4.21), since it

is proportional to Y 3 (see eq. (4.26)). However integrating eq. (4.21) over the two rapidities

one will also pick a contribution proportional to first power of Y from the region η− ξ ∼ 1

where the two gluons are locally correlated in rapidity over and above the long range linear

rapidity correlation explicit in eq. (4.26). Thus for small rapidity differences eq. (4.21)

contains local physical effects not related to the rapidity evolution between η and ξ.

Quite generally existence of such short range correlations can be inferred from the

structure of our calculation of HRFT. Recall that HRFT is obtained by taking the (sum

of the) squares of exclusive n-gluon production amplitudes Qn, integrating them over the

rapidities of all the gluons, and picking the piece of the integral that is linear in the length

of the total rapidity interval Y . Such a linear in Y piece naturally arises from the integral of

Q†
1Q1, since only one rapidity variable is integrated over. However for Q†

nQn with n > 1 the

only way such a linear piece can arise is if there is finite excess (or depletion) of probability

for all n gluons to be correlated in rapidity within a finite interval η1 ∼ η2 ∼ . . . ∼ ηn over a

totally uncorrelated situation. Since as we have seen earlier all Q†
nQn with n ≥ 1 contribute

to HRFT, it means that such short range correlations are indeed present. Eq. (4.21) is just

a specific example of this correlation.

We have not attempted to study these local correlations in any detail. It is tempting

to speculate, however, that they lead to anti-bunching, rather than bunching, thereby

depleting the probability to emit several gluons close to each other in rapidity. This would

then impose sort of a ”rapidity veto”. Such an effect appears in the next to leading order

perturbative approaches [28] and has been used in the framework of the nonlinear high

energy evolution to emulate energy conservation [29]. It would be interesting if the inclusion

of Pomeron loop effects discussed here and in [1] implements such a veto automatically.

We also note that extending our results to include evolution between the rapidities of

the observed gluons, along the lines of [14] is fairly straightforward and we plan to address
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this question in near future. It would be very interesting to compare this to the approach

of the last paper in [20].

4.3 Evolution with rapidity

As we have already stated, we are not going to discuss the evolution with respect to rapidity

differences between the counted gluons. On the other hand the evolution with respect to

the total energy is covered by our present derivation in a trivial manner. All the multi-gluon

observables discussed so far have the form (4.1)

Ō(y, Y ) = 〈O(j, S) 〉j,S ≡
∫

[dj][dS]W P
y [j] O(j, S) W T

Y −y[S] (4.28)

where O(j, S) = Γn and W P
y is the weight functional for averaging over the projectile

degrees of freedom, while W T
Y −y is the same for target degrees of freedom. The total rapidity

of the process is Y and the gluons are measured at rapidity y away from the projectile.

This expression automatically has a factorized structure discussed in [20], independently

whether the scattering objects are nuclei or dipoles. One can of course ask how does this

observable evolve with any of the two rapidity variables it depends on: y or Y − y; or in

fact with Y at fixed y or Y − y. The answer to this question is straightforward given that

we know the evolution of the weight function W P derived in the previous section. Thus

for example the evolution with respect y at fixed Y − y is given by

∂

∂y
Ō(y, Y − y)|Y −y = −

∫

[dj][dS]
[

HRFT[U,R]W P
y [j]

]

O(j, S) W T
Y −y[S] (4.29)

with HRFT given in eq. (2.34). We have not derived directly the evolution of the target

weight functional. However as was shown in [7, 27], Lorenz invariance requires the target

weight function to evolve with the dual Hamiltonian HRFT[RS , S] where RS is to S, what

R is to U . Namely

jT a ≡ −1

g
fabc ∂i S†bd ∂i Sdc ; RS(x) = P exp{g

∫ 1

0
dt T c δ

δjT c(x, t)
} . (4.30)

where jT is the color charge density of the target. Using this we can write the evolution

with respect to Y at fixed y as

∂

∂Y
Ō(y, Y − y)|y = −

∫

[dj][dS] W P
y [j] O(j, S)

[

HRFT[RS , S]W T
Y −y[S]

]

(4.31)

It was also shown in [27] that the complete HRFT must be self dual, namely HRFT[U,R] =

HRFT[R,U ]. We have not verified explicitly that HRFT of eq. (2.34) satisfies the property

of self duality. As noted in [1], the technical issue that has to be resolved before we can

address this question is the duality transformation properties of UL. This is an interesting

question which we plan to address in future. Assuming self duality of HRFT, eq. (4.31) can

be also written as

∂

∂Y
Ō(y, Y − y)|y = −

∫

[dj][dS] W P
y [j] O(j, S)

[

HRFT[S,RS ]W T
Y −y[S]

]

(4.32)
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Combining eqs. (4.29) and (4.31) one can also write evolution equation with respect to

other combinations of y and Y . Thus if we want to follow the evolution of O with rapidity

y keeping the total rapidity fixed we have

∂

∂y
Ō(y, Y − y)|Y = −

∫

[dj][dS]

{

[

HRFT[U,R]W P
y [j]

]

O(j, S) W T
Y −y[S]

− W P
y [j] O(j, S)

[

HRFT[S,RS ]W T
Y −y[S]

]

}

(4.33)

The factorized structure of this evolution is the same as discussed earlier for dipole-nucleus

scattering in [9, 14] and nucleus-nucleus scattering in [20]. It is rather universal, and one

might even say trivial. It does not depend on the nature of colliding objects and, by

definition, is the generic property of any observable that can be represented in the form

eq. (4.28). Of course, not any observable has this representation. Examples to the contrary

are diffractive observables or observables nonlocal in rapidity [13, 14].

The details of the evolution on the other hand depend on the situation. In the dipole-

nucleus scattering [9, 14] one does not have to keep the full HRFT in the evolution equation.

Instead the Hamiltonian which acts on the projectile weight function can be taken as

HKLWMIJ[j,R]. In the nucleus-nucleus scattering, according to [20] the full Hamiltonian

reduces to HJIMWLK[U, δ/δj]. The natural question in this context is, does our formula

eq. (4.33) allow to truncate HRFT to the JIMWLK form when considering multi-gluon

production in nucleus-nucleus scattering. We will discuss this question along with some

other points in the next section.

5 Discussion

The main result of the present paper is the explicit expression for the single gluon and
multi-gluon production amplitudes which include Pomeron loop effects. To summarize, in
the leading order in αs, the n-gluon production amplitude is given by a ”semiclassical”
expression

dn(k1, . . . , kn)

dη1 . . . dηn

=
1

πn

∫

(x1,x̄1;...xn,x̄n)

eik1(x1−x̄1)+...+ikn(xn−x̄n)〈[A(x1) · A(x̄1)] . . . [A(xn) · A(x̄n)]〉j,S
(5.1)

where the ”classical field” A is an explicit function of the projectile and target fields

A = N̄ (b̄ − b) = (1 − l − LL) [bL − S bR] . (5.2)

This result reproduces the known expressions for the ”dipole-nucleus” scattering. It has

the same general structure as the expression for nucleus-nucleus scattering of [20]. The im-

portant difference between our result and the expressions in [20] is that our expressions for

the observables are explicit functions of the projectile and target fields, while the procedure

of [20] involves further numerical solution of dynamical equations of motion to determine

the Yang-Mills fields at asymptotically late times. In this respect our expression eq. (5.2)

is the explicit solution of the classical equations of motion, needed to apply the formalism
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of [20]. It would indeed be very interesting to check explicitly by numerical simulation

whether the numerical solution of Yang-Mills equations after the collision does reproduce

eq. (5.2). We believe this should be the case, once the difference between the gauge fixing

conditions used in [20] and in the present paper is accounted for. We note in this connection

that the eikonal approximation in the symmetric gauge/frame does indeed lead to solution

of classical equations as the leading perturbative contribution [30]. Thus we believe that

our use of the eikonal approximation does not make the accuracy of our approach different

from that of [20].

We have also shown that two - and higher gluon amplitudes have subleading correlated

pieces where all gluons at adjacent rapidities are emitted in a correlated way. As we have

discussed above, the logarithmic part of this correlation is likely to be the first correction

due to the rapidity evolution between the emitted gluons, while the short range correlation,

with the correlation length of order unity, is not an evolution effect. These are gluons

that upon integration over rapidity contribute directly to HRFT. We suspect that these

correlations are in fact negative, and thus manifest themselves as a sort of rapidity veto

due to the Pomeron loop effects.

Finally we have shown that the multi-gluon observables evolve with rapidity according

to HRFT derived in [1]. In this context we again have to discuss the relation of our results

to those of [20]. Ref. [20] discusses the evolution of the single and multi gluon production

amplitudes with rapidity. The rapidity that changes could be either the rapidity of the

measured gluons at fixed total energy (evolution with y at fixed Y ), or the total rapidity of

the process keeping the gluons at mid-rapidity (evolution with Y and y so that Y = 2y).

In all cases ref. [20] asserts that the observables should be evolved with the JIMWLK

Hamiltonian. Can we reconcile the two statements? Consider for example the evolution

∂

∂y

∂n

∂η
|Y −y = −

∫

[dj][dS]
[

HRFT[U,R]W P
y [j]

]

Og(j, S) W T
Y −y[S] (5.3)

with the observable Og being the single gluon amplitude Og = AA (4.2). Since HRFT is a

hermitian operator, we can also write

∂

∂y

∂n

∂η
|Y −y = −

∫

[dj][dS]W P
y [j]

[

HRFT[U,R] Og(j, S)
]

W T
Y −y[S] (5.4)

Let us now consider the question whether we can expand the operator R(x) =

exp{gT a δ
δja(x)} in powers of δ/δj when acting on the observable Og. As is clear from

eq. (5.2), the observable Og is a function of gb and gb̄ only. The fields gb and gb̄ in turn are

functions of gj, as is obvious from the classical equations through which they are defined.

Thus we have
δ

δj
Og ∼ g

δ(gb)

δ(gj)

δ

δ(gb)
Og (5.5)

Thus each term in the expansion of R when acting on the operator Og brings a factor of αs.

The same argument goes through for any leading order multi-gluon inclusive amplitude.

On the basis of this argument we therefore can conclude that for this particular set of

observables, one can expand the Hamiltonian HRFT to leading order in δ/δj. As we know,
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the leading order in this expansion is HJIMWLK. Thus, on the face of it, we recover the con-

clusion of [20] - the evolution hamiltonian for these observables can be taken as HJIMWLK.

The previous line of argument immediately begs two questions. First, how confident

are we in the robustness of the argument itself. The answer to this question is not com-

pletely clear to us. Although naively the argument looks correct, there are examples of

situations where a similar argument fails. Consider the evolution of the dipole-dipole scat-

tering amplitude using the KLWMIJ kernel. Ignoring the details irrelevant to the present

discussion we can write the evolution equation for the S - matrix as

d

dY
S = −

∫

djdα W P [j] K(x, y, z) jx (1 − R)zjy ei
R

x
j(x) α(x) W T [α] . (5.6)

where K is the kernel appearing in HKLWMIJ ([7]). Since the target is a dipole, the field

α ∼ O(g). It then follows by the argument similar to the one given above that when acting

on this observable (ei
R

x
j(x) α(x)), the R’s in the KLWMIJ Hamiltonian can be expanded to

leading order in δ/δj. The leading order expansion is simply the BFKL Hamiltonian. Thus

we would conclude that if the target is a dipole, we can always use the BFKL Hamiltonian

rather than the full KLWMIJ. However we know that this is not the case. The BFKL

Hamiltonian can be used only for evolution to rapidity of order Y ∼ 1
αs

ln 1
α2

s
. Further

evolution with BFKL Hamiltonian violates unitarity of the amplitude, while the full dipole

or KLWMIJ Hamiltonian preserves unitarity. Thus even though the formal argument

about expansion of R at every step of evolution can be made, the cumulative effect of

evolution to large enough rapidity is such that the expanded Hamiltonian misses a very

important physical effect which leads to qualitative change in the evolution. Note that if

the projectile is not a dipole, but rather a ”nucleus” - a state with large dipole density in

its wave function, the breakdown of HBFKL happens much earlier, at Y ∼ 1
αs

.1 In this case

we can point out to a distinct physical effect that is missed by the expansion - multiple

scattering corrections due to scattering of more than one dipole of the projectile on the

target. Those corrections are important if the projectile contains many dipoles, even if the

target is dilute. For a dipole projectile multiple scattering corrections become important

later in the evolution, when the dipole wave function becomes dense, while for a nucleus

this happens much earlier. In the case of the evolution of multi-gluon amplitudes in the

nucleus-nucleus scattering discussed above, we do not have similar understanding. Still we

think that one has to take the argument with a grain of salt. It makes perfect sense to

ask how far one can evolve these observables in rapidity without encountering a problem

of missing some important physical effect. We thus would like to advocate caution on this

issue. The problem in our view needs to be studied further.

The second question is this. If the argument is indeed correct, does this mean that we

can ignore the difference between HJIMWLK and HRFT for all observables, and simply not

bother with any of the calculations in [1]? The answer to this is clearly negative. The fact

1We do not claim that the nuclear weight function can be evolved with HKLWMIJ. Physically of course

this does not make much sense, since the nonlinearities in the wave function are important. We merely

point out that if one does it as a mathematical exercise, the formal argument about expanding R’s breaks

down rather quickly.
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that the evolution simplifies for a certain set of observables, does not mean that it simplifies

for all interesting observables. A simple example of a similar situation is the dipole-nucleus

scattering. In this case the weight function of the projectile dipole W P [j] evolves according

to HKLWMIJ. This evolution is significantly different from HBFKL, since as is well known

HKLWMIJ leads to unitarization of the scattering amplitude, while HBFKL does not. On

the other hand, if we consider a single inclusive gluon amplitude, the observable itself is

quadratic in j (see [9, 13]). Thus when acting on this observable, HKLWMIJ and HBFKL

are identical. The fact that one cannot use HBFKL to evolve the weight functional W P [j]

is another way of saying that there are some interesting observables on which the action

of HKLWMIJ and HBFKL is not equivalent. As mentioned above, one of such observables is

the forward scattering amplitude, which is unitarized by the KLWMIJ evolution but not

by BFKL. Other examples of such observables include various diffractive amplitudes [13]

and also multi-gluon inclusive amplitudes in the case when the rapidity differences between

observed gluons are large and the evolution between them has to be taken into account [14].

We expect the situation to be similar for the case at hand. Clearly, R in HRFT cannot

be expanded when we calculate the forward scattering amplitude on a nuclear target. In

this case the observable is exp{ijα}. When acting on it, R becomes the matrix S, which

is not perturbatively close to unity. Thus expansion is not possible.

We expect that multi-gluon amplitudes with large rapidity differences also do not allow

expansion of R. The observables associated with these amplitudes are calculable and we

hope to present results of this calculation soon. However, we can find a hint that all

derivatives in R are important, by examining the results of the previous section. Consider

the correlated term in the double gluon inclusive amplitude. We expect that the evolution

between the rapidities of the two gluons, when the rapidity difference is large, should be

given by HRFT, or at least closely linked to it. On the other hand, as we have discussed

above, the first term in this evolution is likely just the ”long range” part of the rapidity

correlated term eq. (4.22), that is eq. (4.26). Examining eq. (4.26) we see that it is just

the first order expansion of the denominator of HRFT eq. (2.34) around (1− 2l)R†(1− 2l).

These terms would not depend on S if we were to truncate HRFT at HJIMLK, but they

clearly depend on S in eq. (4.26). This suggests that the factors R cannot be expanded

and the complete Hamiltonian HRFT is important in the evolution of this observable. We

note that the conclusion of ref. [20] is different, namely that HJIMWLK is adequate also for

evolution of multi-gluon observables with large rapidity differences. We feel therefore that

the question warrants further study.

Finally we want to mention that it would be very interesting to understand how to

perform the averaging over the valence and target fields. This would allow one to calculate

physical observables like multi-gluon spectra. One can in principle use the McLerran-

Venugopalan model [25] to specify the projectile and target weight functionals, at least to

get a qualitative idea about the behavior of the observables. However even then one has

to understand how to calculate correlators of three (dependent) matrix degrees of freedom

UR, UL, S, which is far from trivial. This can certainly be done numerically, but one

would like to be able to understand at least the basics analytically. At the moment this is

an open question.
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A Single gluon inclusive amplitude

In this appendix we rederive the expression for the single gluon inclusive amplitude without

the use of the amplitudes Qn, but instead working directly from the definition.

Ôg =
1

2π
〈0|Ω† Ŝ† Ω a†ai (η, k) aa

i (η, k)Ω† Ŝ Ω |0〉 . (A.1)

In the parametric range we are interested in, namely when both the colliding objects carry

fields of order 1/g, we expect the number of produces gluons to be of order 1/αs. We will

calculate the single gluon spectrum only to this order. Let us first of all calculate

Ω† Ŝ† Ω aα Ω† Ŝ† Ω (A.2)

where now the index α stands for all discrete indices as well as momenta. In this equation

and the following we assume that the rapidity of the gluon operator a(η, k) is in the

infinitesimal rapidity bin created by the operator Ω. Thus in practice we are calculating

directly the derivative with respect to rapidity. Recall that

Ω = C B . (A.3)

Thus

ΩaiΩ
† = C B aαB† C† = C [Θαβaβ + Φαβa†β] C† . (A.4)

When acting by the operator C we keep in mind that we are only interested in the leading

order contribution. Thus we do not need to worry about the action of the operator C on j

in Θ and Φ. Also recall that

C aα C† ≈ aα −
√

2 i bα (A.5)

In this relation we have neglected terms which are themselves of order one, and are propor-

tional to A(x− = 0). The reason is that we only need to keep terms, which by subsequent

application of another operator C can be shifted by b, thus generating terms of order 1/g.

However A(x− = 0) commutes with C and thus will not generate such contributions. Thus

to the required order

Ω aα Ω† = Θαβ aβ + Φαβ a†β −
√

2 i (Θ − Φ)αβ bβ [J ] . (A.6)

The subsequent action of the operator Ŝ simply rotates all creation/annihilation operators

as well as all the charge density operators by the single gluon scattering matrix S

Ŝ† Ω aα Ω† Ŝ = Θαβ[SJ ]Sβγ aγ + Φαβ[SJ ]Sβγ a†γ −
√

2 iNαβ [SJ ] bβ [SJ ] . (A.7)
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Finally we apply again the transformation with the operator Ω. The only relevant part of

this transformation is the action of the operator C. All the rest, as before does not give a

leading order contribution

Ω†Ŝ†ΩaαΩ†Ŝ†Ω =
√

2iΘαβ[SJ ]Sβγbγ −
√

2iΦαβ[SJ ]Sβγbγ −
√

2iNαβ [SJ ]bβ [SJ ]

=
√

2 iNαβ [SJ ]
{

Sβγ bγ [J ] − bβ[SJ ]
}

. (A.8)

A similar relation holds for a†. Collecting this together we obtain for the single gluon

inclusive spectrum

Ôg =
1

π

∫

x,y,z,z̄

eik(z−z̄)

{

Sb[J ;x]− b[SJ ;x]

}

N †[SJ ;x, z]N [SJ ; z̄, y]

{

Sb[J ; y]− b[SJ ; y]

}

(A.9)

which is the same as derived in the body of the paper (eq. (4.7)).
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